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ABSTRACT

An entirely rigorous method for the solution of the equations for radi-
ative transfer is presented based on the discrete ordinate theory. The ad-
vantages of the present method are: 1. all orders of multiple scattering
are calculated at once; 2. layers of any thickness may be combined, so that
a realistic model of the atmosphere can be developed from any arbitrary number
of layers, each with different properties and thicknesses; 3. calculations
can readily be made for large optical depths and with highly anisotropic
phase functions; 4. results are obtained for any desired value of the sur-
face albedo including the value unity and for a large number of polar and
azimuthal angles including the polar angle 6 = Oo; 5. all fundamental equa-
tions can be interpreted immediately in terms of the physical interactions
appropriate to the problem. Both the general theory and the method of calcu-
lation are discussed. As a first example of the method numerous curves are
given for both the reflected and transmitted radiance for Rayleigh scattering
from a homogeneous layer for a range of optical thicknesses from 0.0019 to 4096,
surface albedo A = 0, 0.2, and 1, and cosine of solar zenith angle u = 1,

0.5379, and 0.1882.



1. Introduction
The radiation field arising from multiple scattered photons in a plane-
tary atmosphere is of great practical interest. Elegant and elaborate mathe-
matical solutions have been developed for isotropic and Rayleigh scattering
by Chandrasekhar (1960), Sekera (1956, 1957), Kourganoff (1952), and others.
Numerical values for the various parameters of the diffuse radiation from a
planetary atmosphere with Rayleigh scattering have been given in a set of
tables published by Coulson, Dave, and Sekera (1960). These tables are limited
to optical thicknesses of unity or less. Numerical results for Rayleigh scat-
tering have also been presented by Herman and Browning (1965), Dave and
Furukawa (1966), Kahle (1968a, b), Howell and Jacobowitz (1970), and Fymat and
Abhyankar (1971), among others. Among these authors only Dave and Furukawa
(1966) and Kahle (1968b) give radiance values for an optical thickness as
large as 10. Most of the published results are for a surface albedo of zero.
More realistic problems for planetary atmospheres which take account of
the highly anisotropic scattering from aerosols as well as the variations
in the atmospheric parameters with height have not been successfully solved
in terms of standard mathematical functions. Various numerical techniques
have also been proposed to calculate the radiance for anisotropic scattering.
Some of these methods such as that of Herman et al (1971) appear to be appli-
cable only for small optical thicknesses. Important results using matrix
or doubling methods have been given by Twomey et al (1967), Dave and Gazdag
(1970), Dave (1970), Hansen (1969a, b, 1971a, b), and Hansen and Pollack
(1970) . As interesting as they are, these results are limited by various

factors. Those of Twomey et al (1967) use a phase function that is averaged



over a range of angles. Most of these authors use a doubling method which
is applicable to homogenous layers, but has not been applied as yet to the
real atmosphere where various parameters vary with height. Furthermore in
most of these methods,.each order of multiple scattering must be calculated
separately and finally added together.

The discrete ordinate theory has several important advantages over these
other methods. The general theory of discrete spaces has been presented by
Preisendorfer (1965). Important contributions to the theory have been
made by Twomey et al (1966) and more recently by Grant and Hunt (1969).

Our method is closely related to that of Grant and Hunt, but incorporates
various improvements and develops a very much gimpler expression for the
radiance within a layer.

A particularly simple form of the discrete ordinate theory is presented
here that is especially designed for application to physical problems of
radiative transfer. This is an entirely rigorous method for the solution
of the equations for radiative transfer. The theory given here has the fol-
lowing important advantages: 1. all orders of multiple scattering are cal-
culated at once with a corresponding reduction in computer time over methods
involving iterations; 2., layers of any thickness may be combined, so that
a realistic model of the atmosphere may be developed from any arbitrary num-
ber of layers of any predetermined thicknesses, each with different proper-
ties; 3. calculations can readily be made for large optical depths and with
highly anisotropic phase functions; 4. results are obtained for any desired
value of the surface albedo including the value unity as well as for any
polar angle which corresponds to one of the set given by the Lobatto inte-

gration scheme for the number of integration points chosen (the polar angle



6 = 0° is always included in the set); 5. all fundamental equations can be
interpreted immediately in terms of the physical interactions appropriate
to the problem.

After presentation of the general theory and the method of numerical
calculation, results are given for Rayleigh scattering from a homogeneous
layer. Further papers in this series will present results for other cases,

including more anisotropic phase functions and inhomogeneous atmospheres.



1. Discrete Ordinate Theory

In a plane parallel medium all properties depend on a single spatial
coordinate x. For convenience the position within the medium is denoted by
the optical depth 1, defined as the distance x within the medium divided by
the attenuation length. Divide the medium into any desired number of layers;
the boundaries between layers are indicated in order from the top of the
medium by the wvalue of the optical depth at the boundary Tgr T1s Toe The
medium may be inhomogeneous within any layer (see Fig. 1).

Let I+(T) be the specific intensity at the optical depth t for the
radiation in the downward direction according to the usual definition. In

. + .
discrete ordinate theory I (1) is a column matrix

+

I (t ’ul)
+

I (13u2)

I+(T) = (D

+
I (T,um) s
L s

where I+(T,ui) is the downward intensity at the angle 8

i cos—lui (0<uisl).
The azimuthal or ¢ dependence can be separated out of the equation as is shown
in Section 2 and its inclusion here is unnecessary. Similarly let 1 (1) be a
column matrix that represents the upward intensity,

Consider the intemsities of the radiation emerging from a layer whose
boundaries are at Ty and BE These intensities, I+(Tl) and I—(TO), depend
linearly on the incident intensities, I+(TO) and I—(Tl), and the contribution

from the sources within the layer, J+(TO,T1) and J-(Tl,TO) (the downward



intensity at ™ and the upward intensity at T due to sources within the

layer). Except when it is necessary to emphasize the dependence on T, we

use the following concise notation: I—O = I_(TO), I+0 = I+(TO), I—l = I_(Tl),
I+l = I+(Tl), J+Ol = J+(T0,Tl), and JnlO = J—(Tl,ro).
Thus

T =t T+l + T gy (2a)

Ty =t T o+ t1ol 1 *+ 7 107 (2b)

where t01 = t(To,Tl) is a diffuse transmission operator and T T r(Togrl)

is a diffuse reflection operator. For homogeneous layers sy = 1o and
To1 = T10° but these relations no longer hold in general for inhomogeneous
layers. The operators r and t are £ x £ matrices which multiply the column
vectors I.

The problem treated in this section is the derivation of the expression
for the diffuse reflection and transmission operators for a combined layer

(from Ty to 12) from the known operators for two separate layers (from T

0
to T and from T to 12). The resulting expression is valid for the com~
bination of any two layers of finite size and different properties. In the
next section the relation between these operators and the local physical
properties (single scattering function and single scattering albedo) are

derived.

Equations similar to Eq. (2) are valid for the emerging flux of the

layer from v, to T

1 2
+ + - +
I 5 = tlZI 1 + r21I 9 + J 12° (3a)
I o= I+t T . +J (3b)
17 Tt Tl 21



27 Y02t 0 " T2t 2 02° (42)

(4b)

Multiply Eq. (2a) by r,, from the left, add this equation to Eq. (3b),

12
and multiply the resulting equation from the left by (E - rlzrlo)—l, where

E is the identity matrix, to obtain

- -1 - + - +
T, = E-rp,rg) " leT ) v rpptg T+ 5y 150 11 (9

This equation relates the upward flux at any interior point Ty in the

layer from 1, to 12 with the incident upward and downward flux, I—2 and

0

I+O respectively, at the boundaries and the source functions for the layers.
The physical interpretation of this type of equation is discussed later.

Multiply Eq. (3b) by 1o from the left, add this equation to Eq. (2a),

and multiply the resulting equation from the left by (E - -1 to

10512
obtain

+
I 1 - (E -1

-1 + -+ -
12510~ [tgal o+ T1oto1T 2 ¥ 3 01 F T1oT 211 ®

This expression gives the downward flux at any interior point 1, in the

layer from 1, to T,.

0 2

Substitute the expression for I+l from Eq. (6) into Eq. (3a). The

. - +
resulting equation expresses I

in terms of I+0, 1_2, and J+ A com-

2 02°
parison of the coefficients of these quantities with Eq. (4a) yields the

following expressions

-1

t T Tio%12) T tore (7a)

02 = t12(E



-1
= - 8
Tog = To1 + t1p(E -~ Tygfig) T TigTaye (82)
+ o+ -1, + -
Tgp =3 10+ Ep(B = rygryp) 7 Ty F 1907 o) (9a)
Similarly the substitution of the expression for I-l from Eq. (5)
into Eq. (2b) and comparison of this result with Eq. (4b) yields:
to. =t (E—rr)—lt (7b)
20 10 12710 21’
~1
Toz = Tor T t10CE 7 T1o%19) T Tiptons (8b)
J..=J  +¢t (E-71, .1 )'l G+t ). (9b)
20 10 10 12710 21 127 01

The physical meaning of these equations 1s found if a formal expansion

of the quantity (E - rlorlz) is made
-1 o k
E - 1prp) = o (r10T12) - (10)

Substitution of this expression in Eq. (8a), for example, yields

oo
z

) k
T20 = Fa1 ¥ 1z B) (F1ot1) Fiotar (1)

According to Eq. (4a), o0 gives the contribution to the downwérd flux at

the lower boundary, I+2, from an incident upward flux If The contri-

2.
bution from the term k = j in Eq. (11) corresponds to radiation that has

been diffusely reflected from the layer (t l) j times. Equation (11)

0"
states that the radiation reflected from the layer (10,12) is equal to the

radiation reflected directly from the layer (Tl,Té), r,,, to which is added

21

the radiation which undergoes diffuse transmission through the lower layer,
t21, times the diffuse reflection from the upper layer, Ti0° times j dif-

fuse reflections from the lower and then the upper layer, (rlorlz)J,times

the diffuse transmission through the lower layer, tioe
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The physical meaning of each of the other expressions for the diffuse
transmittance, reflectance, and emittance is obtained in the same manner.
One advantage of the discrete ordinate method is that each quantity in the
final equations has a direct physical meaning. The key results are given by
Eqs. (7-9), which give expressions for the diffuse transmittance, reflec~
tance, and emittance for the combination of any two atmospheric layers of
arbitrary thickness. The upward and downward diffuse intensity at the
boundary of the combined layer is obtained from Eq. (4). The diffuse inten~
gity at any point within a layer is given by Egqs. (5) and (6), an expression
appreciably simpler than those previously given in the literature (Grant
and Hunt, 1969). The physical meaning of each term in these equations is
obtained by the same method as discussed in connection with Eq. (8a). For
example, the upward diffuse flux at the interior point 1, is given by Eq. (5)
as (1) the reflection to every order between the layers of contributions
from the upward diffuse intensity at the lower boundary Ty transmitted
through the lower layer (1,2), (2) the downward diffuse intensity at the
upper boundary T4 transmitted through the upper layer (0,1) and reflected
from the lower layer (1,2), (3) the upward diffuse emission of the layer
(1,2), and (4) the downward diffuse emission from the upper layer (0,1)
reflected from the lower layer (1,2) as represented by the first, second,
third, and fourth terms of the right hand bracket in Eq. (5) respectively.

Any reflecting properties of a lower boundary surface can easily be

included in the formalism. A layer extending from Ty to 21

with a lower boundary surface if the diffuse transmission and reflection op-

can be combined

erator can be defined. Consider the lower surface as extending from 7. to T

1 2°
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+ - .
The boundary condition is that I 5 = I 5 = 0, i.e. no radiation either leaves
or is incident on the Ty boundary of the ground. The appropriate transmission

and reflection operators are t., =t,, = 0and r., 6 =71,, =T

127 1 12 - 21 Thus, it

G.
follows from Eq. (2) that

‘I 1= rGI 1° (12)

The matrix g is determined for any surface by calculation of the
diffuse intensity reflected at every angle from a given downward intensity
at a particular angle of incidence. The angle of incidence is then varied
through all values considered in the problem. The alEedo of the surface is
obtained from the ratio of the upward flux to the downward flux at the sur-

face. The elements of s in a given column are all equal for a Lambert

surface.
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2. Numerical Techniques
The theory is extended in this section to include the case where the
radiance depends on both u and ¢. Fourier analysis is used to decouple
the azimuth dependence in the equations. Consider the equation of transfer
for the diffuse radiance I(t;u,¢) i.e.,
(u -fﬁ + DI(t5u,¢) = F exp(—‘r/uo)w(r)p(r;u,q);u0’¢0)
1 27

4'~f1 \Jhp(T;U,¢;U's¢‘)I(T;U"¢‘)dH‘d¢'
-1 0

(13)

where F is the incident solar flux, w is the single scattering albedo, and
-1 £y s£1land 02 w(rt) £1. The phase function p(r;u,¢;u0,¢0) is subject

to the following normalization condition

27

1
f fp(T;u,¢;u',¢')du‘d¢' = 1. | (14)
-1 0

Since the phase function depends only on the cosine of the angle between

the directions (u,¢) and (u',¢"), then

p(>dsu’,0") = p(u,sd5u',9),
P(_u’¢;-u's¢') = P(u,¢§u',¢'), (15)

P(u,¢;-u"¢') = P(-u,¢;ﬁ',¢') = P(U!,¢'a-ﬁ:¢)'

The standard Legendre polynomial expansion technique (Chandrasekhar,
1960) is used to decouple the ¢ dependence. Assume that the phase function

consists of only a finite number of terms N, so that

pleos @) = T p (uu') cos & (4-41). 16)
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This equation together with Eq. (14) yields
1

5po(u,u')du' = em7t a7
-1
for all 0 < p £ 1. Assume that the radiance I has a similar expansion,

namely

N
I(t,u,9) = 220 I,(t,u) cos 2 (¢-¢O)- (18)
This expansion together with Eqs. (16) and (13) yields

‘ (U%? + 1)12(T’U) = w(t) F exp (-T/UO)PQ(U,UO)

1 (19)
+ 7(1 + 602) vfpﬁ(u,u‘)lg(r,u')du'
-1

for £ =0, 1, 2, . . . , N. We have thus reduced Eq. (13) to a system of

N + 1 independent equations. Rewriting Eq. (19) in terms of the upward (I )

and downward (I+) radiance we have

(u%; + l)I£+(T,U) = w(t) F exp (—r/uo)pl(u,uo)
1

+ w(t)r(l + 60}2,) { pg(u’U')IQI'*-(TaU')dU'
0

1

+ Jp, (=TI, (t,uNdu'l,
i,

(_p%?.+ DI, (t,0) = w(1) F exp (-t/ug)p, (-usup)

1
+ w(t)r(1 + 502) {fpz(—u,u')lz-*-('r,u')du'
1 0
+ ‘YPR(‘U,'U')IQ—(T,u')du'}.
0
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In discrete ordinate theory the integrals are discretized by some
appropriate quadrature formula. In all the calculations reported in this
article Lobatto integration is used since it allows computations of the

radiance at u = *1. The quadrature is performed as follows:

1

du =
.r;(u) u &

-1

[ Mack=]

g(uj)cj + R, (21)

< 2n - 3.

where the error term Rn vanishes for a polynomial of degree
The abscissas uj and weights Cj were taken from Stroud and Secrest
(1966). Let us adopt the following matrix notation for the discrete

ordinate case



F +2, +9 +9
I Lig oo Iin
+
1;2 (T,ui’u:j) - . . .
+2 + +2
Iml Im2 . Imm s
[+ ++ A+ ]
211 P12 " Poig
++. o
R, (T,ui,uj) = )
++ ++ ++
eml Pom2 * Pomm °
o -
™~ +- +-
Pri1 Pp12 Py 1
.
ER/ (T’Ui’-uj) - .
o+ +- +-
4ml png szﬂ ?
— - (22)
E-H- exp (~t/u,) p++ exp (-t /u_ ) !
211 17 " Poim ~T/Hp
+
I (T,ui,uj) = Fuw(t) . )
++ ++
Poml eXP(—r/ul) o Poim exp(~T/uTzJ’
+— +- -
lel exp(-—r/ul) o Poim eXP(-"r/um)
JJZ, (Tauj_:-uj) = Fw(T) . .
- +-
__P’@ml exp( T/ul) cen pJme exp(—T/um) s

c [Cjﬁjl;] s
M= [uso
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where Wy > 0, m = n/2 (n is the order of the quadrature in Eq. (21)) and
each column in the radiance matrix corresponds to a different angle of
incidence for the source.

Equation (20) in this representation becomes

+

I, ()
M ——%;——— + }£+(T) = g2+(T) + o(t)r(l + SOQ)X
(o) (el (1) + py (DI, (M, (23)
dIR—(T) _ _ . + . _
M _:E¥_*_ +I,7(1) = J, (1) + ol + §) {p, (L, (1) +p, (D) (1)}

With the equation of transfer expressed in this form, the infinitesimal

generators of the star semigroup are as follows (see Grant and Hunt, 1969).

++

r, (v = gfl[g —w(t)m(l + 60£)g;+(r)g],

(o = (L + 600085 (D)Cs

rhm = e + 8 )y (e, .
r, (1 = MHE - w(nr@ + 800)B, (D)€l

5, =¥ Mo,

L, (1) = yflgz'(T),

where E denotes the identity matrix.

It should be noted that due to the symmetry conditions of the phase

and F;- = T—+. This symmetry leads

function (see Eq. (15)) that g{* =77 ;

~2

to reciprocity in the equation of transfer. The operators r and t for an
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infinitesimal layer can now be expressed as follows:
..|._’.
tro = B~ L (83859 +0(4y¢)s

top = E - T, (8814 + 0(ayp),

(25)
I
Tor = Iy (B)Byq + 0(819)s
= I T(E)A, .+ 0(A, )
10 T 22 10 10°°
where TO < E < T and AlO = Tl - TO- We also have the relations
+ _ o+
Zop = Zg (B)A34 + 0(8)s
(26)

201 = Z2 (E)A10 + O(Alo).

Since the operators for an infinitesimal layer have been defined, the star
product algorithm (see Egs. (7a) = (9b)) can be used to build up a layer
of any desired thickness.

In order to insure that the matrices in Eq. (25) are non-negative,

the following condition must be satisfied (see Grant and Hunt, 1969).

0 < (t, - 1) > min {u./[1 - Bw(t)]}. @n
1 0 g i
A value of 2_15 for AlO is chosen in order to insure that the trunca-

tion error is small enough for the single scattering approximation to hold.
Thus when the thickness of the layer is doubled each time, a value of

T = 1 is reached in fifteen steps.
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a. Computational Aspects
The stability of the discrete ordinate algorithm for large optical
depths depends on careful attention to several points. The first of
these involves the normalization of the phase function (see Eq. (17)).
A tabular phase function is used to compute the coefficient pz(ui,u.)

in Eq. (16) in the following way:

1 N-1
po(ui,u ) = -ﬁ kZO Py, ,uj,kcb),
(28)
( _2 N k k 2 #0
Py ui,uj) =5 EO (ui,uj, ¢) cos (Lko), £ »

where ¢ = 27/N; linear interpolation is used to evaluate the phase function
at intermediate points. For each By and uj the number of % terms needed is
found by successively adding terms in the series expansion until the
original phase function has been approximated to the desired accuracy.

If po(ui,uj) computed in this manner is substituted into Eq. (17), a small
error in the normalization is found in general. TFurthermore the normaliza-

tion constant is a function of p, i.e.,

_l .,
€j = Z PO(Ui’U )C - (2m) s J =1, 2, «ocy m (29)

for 0 < My <1. A éorrection matrix is computed from the errors e.. This
matrix is made symmetric to preserve reciprocity. To insure that this cor-
rection matrix is small a large number of quadrature points must be used in
the case of a highly anisotropic scattering function.

b. Lambert Surface

By definition a Lambert surface of albedo A converts any radiance
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. +
distribution impinging upon it into a uniform distribution; if F is the
downward flux, then A.F+ is the upward flux. The matrix representation of T

from Eq. (12) in discrete ordinate theory is

o v

Ulcl e ]JmCm

o °

A . (30)
G m . .

L oecsu
j=1 171 Hy€q ee M C

i

The only remaining operator to be defined is Zé'which is the source

e

term for the Lambert surface due to the unscattered incident flux. The

matrix representation of this operator is given by

o
sl

g exP(—'t/ul) cee W exP(-T/um)

. . (31)

!
=] b

u . _ . )
i"di g exp( T/ul) cee B exp( T/u?i .

2r I ¢
i=1

oty

The star product algorithm (Eqs. (7a) - (9b)) can now be used directly by

treating the surface extending from T to T, as a degenerate slab, i.e.

r12 = r21 = rG and t12 = t21 = 0.
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3. Radiance for Rayleigh Scattering

The discrete ordinate method described here has been used to calculate
the radiance for Rayleigh scattering. A 42 term Lobatto integration was
used which is equivalent to fitting the function with a 8lst degree
polynomial. The results were printed for each combination of the 21

values of u and U, as well as for seven ¢ values and 3 different’values of

0
the surface albedo A. These values have been checked against all published
values of the radiance. 1In most cases only an approximate check can be
made since the values of u are different for the two calculations; however,
in all cases the results agree to within the available accuracy. A dif-
ferent check was made by repeating our calculation with only a 14 term
Lobatto integration. These results agree at all optical thicknesses to
within 0.2%. The stability of the method was establ;shed by noting that
for the conservative case flux was conserved to 1 part in lO6 for optical
depths greater than 4000. The incoming solar flux is normalized to unity
in our calculations,

The upward radiance when the cosine of the solar zenith angle Hy = 1
is shown in Fig. 2a for a surface albedo A = 0. There is limb brightening
for small values of the optical depth t; however, when t is greater than a
value near unity, limb darkening occurs. In all of the figures given here
for the upward radiance, the curve for the largest T value in each case
is a limiting curve which does not change further by more than the width
of the symbol as T increases further.

The upward radiance when Mg = 1 and A = 0.2 is given in Fig. 2b. When Tt

is very small, the upward radiance is essentially constant, since the
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observed radiation consists almost entirely of photons which have been
reflected uniformly in all directions by the Lambert surface and very few
which have been scattered in the atmosphere., As t increases from a small
value 1limb brightening changes to limb darkening when T ~ 1.

The upward radiance when Mg = 1 and A = 1 is shown in Fig. 3a. There
is relatively little variation with 1; the curve changes from nearly a
constant to one with limb darkening as 1 increases. For large 1 values the
ratio of the upward radiance at the zenith to that near the horizon (last
computed point p = 0.03785 or & = 87.83°) is 1.576.

The upward radiance when My = 0.5379 and A = 0 is shown in Fig. 4
for ¢ = 0° (left hand side) and ¢ = 180° (right hand side). One particular
curve represents the radiance that would be observed in the principal plane
from the horizon through the anti-solar point to the zenith and back down
to the opposite horizon. One of the most interesting features of these
curves is the strong asymmetry near the nadir when T is small; in this
region the radiance is always greater for ¢ = 180O than the corresponding
value for ¢ = 0°. Curves are not shown here for other values of s since
the variation is relatively small. |

The upward radiance when Wy = 0.1882 and A = 0 is shown in Fig. 5
when ¢ = 0° and 1800, in Fig. 6 when ¢ = 30° and 1500, and in Fig. 3b when
o = 90°. There is the same asymmetry in the curves near the nadir when t
is small. The limiting curve for large T shows a pronounced limb brightening
at both horizons. The variation with ¢ is modest.

The upward radiance when By = 0.1882 and A = 0.2 is given in Fig. 7

when ¢ = 0° and 180° and in Fig. 8a when ¢ = 90°. The radiance when t<<l
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is nearly independent of the nadir angle. On the other hand the limiting
curve for large T is nearly the same as when A = 0.

The upward radiance when Hg = 0.5379 or Hg = 0.1882 and A = 1 is shown
in Fig. 9 when ¢ = 0° and 180° and in Fig. 8b when ¢ = 90°. When t<<1
the upward radiance is nearly independent of u, since almost all of the
observed photons have been reflected from the Lambert surface. As T in~-
creases more variation develops in the radiance curves for Hy = 0.1882
than for My = 0.5379. A slight limb brightening develops in the principal
plane for vo = 0.5379 as 1 increases, while a slight limb darkening arises
at ¢ = 90°. For Ho = 0.1882 there is a more pronounced limb brightening
in the principal plane as T increases together with an asymmetry in the
curve around the nadir. The limb brightening is also present for ¢ = 90°.

The downward radiance when Mg = 1 and A=0, 0.2, and 1 is shown
in Figs. 10a, 10b, and lla respectively. As 1 increases from a very small
value, the downward radiance increases for a given u value and reaches a
maximum value when 7 ~ 1 for A= 0 and 0.2. Limb brightening also changes
to 1imb darkening near t = 1. When A = 1 the downward ¥adiance approaches
a constant limiting value on the scale of these curves when T ~ 16; since
there is no absorption either in the atmosphere or at the boundary surface,
a uniform radiation field develops deep in such an atmosphere. A quantity
of interest is the ratio of the downward radiance at the zenith to the value
near the horizon (last computed point u = 0.03785 or 6 = 87.830) for large
values of t; this ratio is 2.713, 2.115, and 1.000 when A = 0, 0.2, and 1
respectively. The ratio is independent of the value of Ho in the limit of

large T.
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The downward radiance in the principal plane when Mo = 0.5379 is shown
in Fig. 12. The same features appear in these curves as in those for Ko = 1
already discussed. There is an asymmetry in the curves around the zenith
direction when 1 < 1.

The downward radiance when Mg = 0.1882 and A = 0 is shown in Fig. 13
when ¢ = 0° and 1800 and in Fig. 11b when ¢ = 90°. Because of the low
solar angle, the maximum value of the downward radiance for u values near
the horizon now occurs for values of the optical thickness appreciably less
than unity.

The downward radiance when Ny = 0.1882 and A = 0.2 is shown in Fig. 14
for the principal plane and in Fig. 15a for ¢ = 90°. These curves are
very similar to the corresponding curves for A = 0., The downward radiance
is not sensitive to the value of the surface albedo in this range, since a
photon reflected from the surface into an upward direction must be scattered
another time in order to join the downward stream of radiation.

The downward radiance when Mo = 0.5379 and A = 1 is given in Fig. 16
for the principal plane. The curves for 1<<1 have the same shape as those
for A =0 and 0.2, but the actual radiance values are greater. The downward
radiance for A = 1 is essentially independent of u when T is much larger
than unity.

The downward radiance for UO = 0.1882 and A = 1 is shown in Fig. 17
for ¢ = 0° and 180° and in Fig. 15b for ¢ = 90°. The main difference between
these curves and those for solar angles nearer the zenith is that the down-
ward radiance near the horizon for Mg = 0.1882 is appreciably greater than
its limiting value for large T over a range of T values from approximately

0.02 to 1. For 1 values larger than unity the radiance approaches a constant

limiting value independent of u.
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4., Conclusion

A modified version of the discrete ordinate theory of radiative transfer
has been presented here. This theory has relatively simple expressions for
the radiance at any depth in a plane parallel atmosphere with each term re-
presenting a physical interaction appropriate to the problem. No iteration
procedures are used, but rather all orders of multiple scattering are
calculated at once. This theory can be used when the atmospheric para~-
meters vary with height, since layers of any desired thicknesses may be
combined. The radiance may readily be calculated for large optical depths,
highly anisotropic phase functions, for all values of the surface albedc
including A = 1 and for a number of polar angles including p = 1. As a first
application of the method detailed results have been given for Rayleigh
scattering from a homogeneous layer. The upward and downward radiance is
given for optical thicknesses 1 from 0.0019 to 4096, for surface albedo
A=20, 0.2, and 1, and for cosine of solar zenith angle u = 1, 0.5379, and
0.1882. This work was supported in part by Grant No. NGR 44~001-117 from the

National Aeronautics and Space Administration.
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Legends for Figures

Graphic representation of discrete ordinate vectors.

Upward radiance at the top of atmosphere for Rayleigh scattering

for uo = 1 and various values of the optical thickness T as a

function of the

cosine of the nadir angle u. The left hand figure

is for A= 0 (Fig. 2a); the right hand figure is for A = 0.2 (Fig. 2h).

The limiting curve for large T is the same as the last plotted curve

within the width of the symbols.

Upward radiance

for My 1 and A =1; Fig. 3b. M, = 0.1882, A =0,

and ¢ = 90°. See Fig. 2 for key.

Upward radiance

Fig. 2 for key.

Upward radiance

Fig. 2 for key.

Upward ‘radiance

Fig. 2 for key.

Upward radiance

Fig. 2 for key.

Ufward radiance
u, = 0.5379 and

Upward radiance

for v, = 0.5379, A =0, and ¢ = 0° and 180°. See
for u = 0.1882, A = 0, and ¢ = 0° and 180°. lSee
for Moo= 0.1882, A =0, and ¢ = 30° and 150°. See
for u_ = 0.1882, A = 0,2, and ¢ = 0° and 180°. See

90°; Fig. 8b.

for My = 0.1882, A = 0.2, and ¢
0.1882, A =1, and ¢ = 90°. See Fig. 2 for key.

for Hy = 0.5379 and 0.1882, A =1, and 0° and 180°.

See Fig. 2 for key.
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12.

13.

14.

15a.

16.

Downward radiance at bottom of atmosphere for Mo

Fig. 10b. M, = 1 and A = 0.2. See Fig. 2 for key.

Downward radiance for u = 1 and A

and ¢ = 90°. See Fig. 2 for key.

Downward radiance for p_ = 0.5379, A

See Fig. 2 for key.

Downward radiance for p = 0.1882, A

See Fig. 2 for key.

Downward radiance for u_ = 0.1882, A

See Fig. 2 for key.

1; Fig. 1lb.

L]

Downward radiance for y_ = 0.1882, A =

[¢)

0, and ¢

0, and ¢

0.2, and

0.2, and

¢

1l and A = 0;

u, = 0.1882, A

0° and 180°,

0° and 180°.

My = 0.1882, A= 1, and ¢ = 90°. See Fig. 2 for key.

Downward radiance for Hy = 0.5379, A =

Fig. 2 for key.

Dowvnward radiance for u, = 0.1882, A =

Fig. 2 for key.

1, and ¢

1, and ¢

0° and 180°.

0° and 180°.

0° and 180°.
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90°; Fig. 15b.

See

See
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